基本邏輯名詞

2009/02/25
~ 阿亮 ~

最近看到一些簡單的邏輯 (Logic) 英詞名詞,並不是很清楚,所以,找出來再複習一下。

其實大部份是很簡單的,只是換成英文就不熟了.

Rules of Inference

 Modus Ponens

\displaystyle\begin{array}{l}
p\rightarrow q \\
p \\
\therefore q
\end{array}

 

 Modus Tollens

\begin{array}{l}
p\rightarrow q \\
\neg q \\
\therefore \,\neg p
\end{array}

 

 Hypothetical Syllogism

\begin{array}{l}
p\rightarrow q \\
q\rightarrow r \\
\therefore p\rightarrow r
\end{array}

 

 Disjunctive Syllogism

\begin{array}{l}
p\vee q \\
\neg p \\
\therefore q
\end{array}

 Constructive Dilemma

\begin{array}{l}
(p\rightarrow q) \wedge (r\rightarrow s) \\
p\vee r \\
\therefore q\vee s
\end{array}

 

 Absorption

\begin{array}{l}
\,\\
p\rightarrow q \\
\therefore p\rightarrow (p\wedge q)
\end{array}

 Simplification

\begin{array}{l}
\\
p\wedge q \\
\therefore p
\end{array}

 

 Conjunction

\begin{array}{l}
p \\
q \\
\therefore p\wedge q
\end{array}

 

 Addition

\begin{array}{l}
\\
p \\
\therefore p \vee q
\end{array}

 

 

Rules of Replacement

Double Negation p\leftrightarrow \,\neg\neg p
Commutation \begin{array}{l} \\  (p\vee q)\leftrightarrow  (q\vee p) \\ (p\wedge q)\leftrightarrow  (q\wedge p) \\ \end{array}
Tautology \begin{array}{l} \\  p\leftrightarrow  (p\vee p) \\ p\leftrightarrow  (p\wedge p) \\ \end{array}
Association

\begin{array}{l} \\ \left[p\vee  (q\vee r)\right] \leftrightarrow  \left[(p\vee  q)\vee r\right] \\  \left[p\wedge  (q\wedge r)\right] \leftrightarrow  \left[(p\wedge  q)\wedge r\right] \\ \end{array}

Transposition \begin{array}{l} \\  (p\rightarrow q) \leftrightarrow  (\neg q\rightarrow \neg p) \\ \end{array}
Material Implication \begin{array}{l} \\  (p\rightarrow q) \leftrightarrow  (\neg p\vee q) \\ \end{array}
Exportation  \begin{array}{l} \\  \left[(p\wedge q)\rightarrow r }\right]  \leftrightarrow   \left[p\rightarrow (q\rightarrow r)\right]   \\ \end{array}
Material Equivalence

\begin{array}{l} \\
(p\leftrightarrow q)\leftrightarrow \left[(p\rightarrow q) \wedge (q\rightarrow p)\right] \\
 (p\leftrightarrow q)\leftrightarrow \left[(p\wedge q) \vee (\neg p \,\wedge \neg q)\right] \\
\end{array}

Distribution

\begin{array}{l} \\
\left[p \wedge (q\vee r)\left] \leftrightarrow \left[(p\wedge q)\vee (p\wedge r)\right] \\
\left[p \vee (q\wedge r)\left] \leftrightarrow \left[(p\vee q)\wedge (p\vee r)\right] \\
\end{array}

De Morgan’s Theorems

\begin{array}{l} \\
\neg(p \wedge q)\leftrightarrow (\neg p \,\vee \neg q) \\
\neg(p \vee q)\leftrightarrow (\neg p \,\wedge \neg q) \\
\end{array}

 

 

Bi-conditionals Logical Equivalence

(\forall x)(\psi x\rightarrow \varphi x) \leftrightarrow  \,\neg(\exists x)(\psi x \,\wedge \neg\varphi x)

"Everything in the lake is wet." 

is logically equivalent to

"There isn’t anything in the lake which is not wet."

 

(\exists x)(\psi x\wedge \varphi x) \leftrightarrow  \,\neg(\forall x)(\psi x \rightarrow \,\neg\varphi x)

"There exists at least one individual who is both a native of Boston and of Irish descent."

is logically equivalent to

"It’s not true that no natives of Boston are of Irish descent."

 

(\forall x)(\psi x\rightarrow \neg\varphi x) \leftrightarrow \,\neg(\exists x)(\psi x \wedge \varphi x)

"No residents of Boston are Irish."

is logically equivalent to

"It’s not true that some residents of Boston are Irish."

 

(\exists x)(\psi x \,\wedge \neg\varphi x) \leftrightarrow \,\neg(\forall x)(\psi x \rightarrow \varphi x)

 "Some residents of Boston are not Irish."

is logically equivalent to

"Not all residents of Boston are Irish."

 

 

 



歡迎留言

敝站會審核留言的適宜性,您的留言可能會較晚發佈,而且小弟保留刪除的權利!!

站內搜尋



本站其他服務

本站其他軟體



  • 批踢踢快訊 (pttNews)

    身為鄉民的您,是不是常常覺得現在的批踢踢 (PTT) 閱讀器,明明您就只要看幾個板,都幫您分類好,但不是您要的?甚至您只想關注某個人(或某件事)的消息,卻散布在不同東西,找出來很辛苦? 這個 App 可以解決您這些問題,快來用吧!


  • 臉書粉絲專頁搜尋 (FPSearch)

    不用登入臉書即可搜尋臉書粉絲專頁(臉書粉絲團)所公開的文章。您可以指定特定日期範圍之前的文章,也可設定搜尋粉絲專頁內包含特定關鍵詞的文章。


  • 照片去背(PhotoEraser)

    一款方便移除背景的工具,產生透明背景圖可以存回原本相簿,也可分享到其他 App 使用.


  • 下一台單車(NextBike)

    打開定位即搜尋附近二十點自行車站點,不塞滿全部站點資料到整個地圖上,所以畫面簡潔方便看清楚目前所在地,若需要搜尋地圖其他位置附近站點,再點擊地圖即可。


  • 標案快訊

    讓你可以輕鬆追蹤含有您想要關注關鍵詞的任何採購標案,只要有最新的資訊,「標案快訊」即會推播通知給你.


  • 條碼掃描器(QRCode)

    支援 QRCode and Barcodes、可連續快速掃描、自動對焦、可打開手電筒供掃描時使用