基本邏輯名詞

2009/02/25
~ 阿亮 ~

最近看到一些簡單的邏輯 (Logic) 英詞名詞,並不是很清楚,所以,找出來再複習一下。

其實大部份是很簡單的,只是換成英文就不熟了.

Rules of Inference

 Modus Ponens

\displaystyle\begin{array}{l}
p\rightarrow q \\
p \\
\therefore q
\end{array}

 

 Modus Tollens

\begin{array}{l}
p\rightarrow q \\
\neg q \\
\therefore \,\neg p
\end{array}

 

 Hypothetical Syllogism

\begin{array}{l}
p\rightarrow q \\
q\rightarrow r \\
\therefore p\rightarrow r
\end{array}

 

 Disjunctive Syllogism

\begin{array}{l}
p\vee q \\
\neg p \\
\therefore q
\end{array}

 Constructive Dilemma

\begin{array}{l}
(p\rightarrow q) \wedge (r\rightarrow s) \\
p\vee r \\
\therefore q\vee s
\end{array}

 

 Absorption

\begin{array}{l}
\,\\
p\rightarrow q \\
\therefore p\rightarrow (p\wedge q)
\end{array}

 Simplification

\begin{array}{l}
\\
p\wedge q \\
\therefore p
\end{array}

 

 Conjunction

\begin{array}{l}
p \\
q \\
\therefore p\wedge q
\end{array}

 

 Addition

\begin{array}{l}
\\
p \\
\therefore p \vee q
\end{array}

 

 

Rules of Replacement

Double Negation p\leftrightarrow \,\neg\neg p
Commutation \begin{array}{l} \\  (p\vee q)\leftrightarrow  (q\vee p) \\ (p\wedge q)\leftrightarrow  (q\wedge p) \\ \end{array}
Tautology \begin{array}{l} \\  p\leftrightarrow  (p\vee p) \\ p\leftrightarrow  (p\wedge p) \\ \end{array}
Association

\begin{array}{l} \\ \left[p\vee  (q\vee r)\right] \leftrightarrow  \left[(p\vee  q)\vee r\right] \\  \left[p\wedge  (q\wedge r)\right] \leftrightarrow  \left[(p\wedge  q)\wedge r\right] \\ \end{array}

Transposition \begin{array}{l} \\  (p\rightarrow q) \leftrightarrow  (\neg q\rightarrow \neg p) \\ \end{array}
Material Implication \begin{array}{l} \\  (p\rightarrow q) \leftrightarrow  (\neg p\vee q) \\ \end{array}
Exportation  \begin{array}{l} \\  \left[(p\wedge q)\rightarrow r }\right]  \leftrightarrow   \left[p\rightarrow (q\rightarrow r)\right]   \\ \end{array}
Material Equivalence

\begin{array}{l} \\
(p\leftrightarrow q)\leftrightarrow \left[(p\rightarrow q) \wedge (q\rightarrow p)\right] \\
 (p\leftrightarrow q)\leftrightarrow \left[(p\wedge q) \vee (\neg p \,\wedge \neg q)\right] \\
\end{array}

Distribution

\begin{array}{l} \\
\left[p \wedge (q\vee r)\left] \leftrightarrow \left[(p\wedge q)\vee (p\wedge r)\right] \\
\left[p \vee (q\wedge r)\left] \leftrightarrow \left[(p\vee q)\wedge (p\vee r)\right] \\
\end{array}

De Morgan’s Theorems

\begin{array}{l} \\
\neg(p \wedge q)\leftrightarrow (\neg p \,\vee \neg q) \\
\neg(p \vee q)\leftrightarrow (\neg p \,\wedge \neg q) \\
\end{array}

 

 

Bi-conditionals Logical Equivalence

(\forall x)(\psi x\rightarrow \varphi x) \leftrightarrow  \,\neg(\exists x)(\psi x \,\wedge \neg\varphi x)

"Everything in the lake is wet." 

is logically equivalent to

"There isn’t anything in the lake which is not wet."

 

(\exists x)(\psi x\wedge \varphi x) \leftrightarrow  \,\neg(\forall x)(\psi x \rightarrow \,\neg\varphi x)

"There exists at least one individual who is both a native of Boston and of Irish descent."

is logically equivalent to

"It’s not true that no natives of Boston are of Irish descent."

 

(\forall x)(\psi x\rightarrow \neg\varphi x) \leftrightarrow \,\neg(\exists x)(\psi x \wedge \varphi x)

"No residents of Boston are Irish."

is logically equivalent to

"It’s not true that some residents of Boston are Irish."

 

(\exists x)(\psi x \,\wedge \neg\varphi x) \leftrightarrow \,\neg(\forall x)(\psi x \rightarrow \varphi x)

 "Some residents of Boston are not Irish."

is logically equivalent to

"Not all residents of Boston are Irish."

 

 

 



站內搜尋



本站其他服務

本站其他軟體



  • 藝文快訊

    讓你可以輕鬆追蹤含有您想要關注關鍵詞的任何藝文活動訊息,只要有最新的資訊,「藝文快訊」即會推播通知給你.


  • 台灣匯率快算

    提供全球 150 種以上貨幣即時換算,以及各種匯率歷史變化圖。


  • 下一班火車 (nextRail)

    這個 app 只要開啟後,就根據定位幫你過濾出最近火車站的時刻表,不用再按任何按鈕了,方便您在很快時間內確定要坐的哪一班火車


  • 國道一路通(FreeWay)

    打開定位即實際地圖上繪製所在地中心附近的車況圖,可縮放地圖,不再是小小的縮小圖,快速了解高速公路的路況。


  • 股海快訊 (iNews123)

    提供特定個股新聞更新推播、股價警示推播、新聞社群分享以及每日個股收盤價等功能的股票App/股市App.


  • 條碼掃描器(QRCode)

    支援 QRCode and Barcodes、可連續快速掃描、自動對焦、可打開手電筒供掃描時使用